Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
NPJ Syst Biol Appl ; 10(1): 22, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429306

RESUMO

In the initial hours following the application of the calcium channel blocker (CCB) nifedipine to microtissues consisting of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), we observe notable variations in the drug's efficacy. Here, we investigate the possibility that these temporal changes in CCB effects are associated with adaptations in the expression of calcium ion channels in cardiomyocyte membranes. To explore this, we employ a recently developed mathematical model that delineates the regulation of calcium ion channel expression by intracellular calcium concentrations. According to the model, a decline in intracellular calcium levels below a certain target level triggers an upregulation of calcium ion channels. Such an upregulation, if instigated by a CCB, would then counteract the drug's inhibitory effect on calcium currents. We assess this hypothesis using time-dependent measurements of hiPSC-CMs dynamics and by refining an existing mathematical model of myocyte action potentials incorporating the dynamic nature of the number of calcium ion channels. The revised model forecasts that the CCB-induced reduction in intracellular calcium concentrations leads to a subsequent increase in calcium ion channel expression, thereby attenuating the drug's overall efficacy. The data and fit models suggest that dynamic changes in cardiac cells in the presence of CCBs may be explainable by induced changes in protein expression, and that this may lead to challenges in understanding calcium based drug effects on the heart unless timings of applications are carefully considered.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Bloqueadores dos Canais de Cálcio/farmacologia , Cálcio , Canais de Cálcio
2.
ACS Pharmacol Transl Sci ; 5(8): 652-667, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35983280

RESUMO

Evaluation of arrhythmogenic drugs is required by regulatory agencies before any new compound can obtain market approval. Despite rigorous review, cardiac disorders remain the second most common cause for safety-related market withdrawal. On the other hand, false-positive preclinical findings prohibit potentially beneficial candidates from moving forward in the development pipeline. Complex in vitro models using cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CM) have been identified as a useful tool that allows for rapid and cost-efficient screening of proarrhythmic drug risk. Currently available hiPSC-CM models employ simple two-dimensional (2D) culture formats with limited structural and functional relevance to the human heart muscle. Here, we present the use of our 3D cardiac microphysiological system (MPS), composed of a hiPSC-derived heart micromuscle, as a platform for arrhythmia risk assessment. We employed two different hiPSC lines and tested seven drugs with known ion channel effects and known clinical risk: dofetilide and bepridil (high risk); amiodarone and terfenadine (intermediate risk); and nifedipine, mexiletine, and lidocaine (low risk). The cardiac MPS successfully predicted drug cardiotoxicity risks based on changes in action potential duration, beat waveform (i.e., shape), and occurrence of proarrhythmic events of healthy patient hiPSC lines in the absence of risk cofactors. We showcase examples where the cardiac MPS outperformed existing hiPSC-CM 2D models.

3.
Nat Biomed Eng ; 6(4): 372-388, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35478228

RESUMO

The immature physiology of cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) limits their utility for drug screening and disease modelling. Here we show that suitable combinations of mechanical stimuli and metabolic cues can enhance the maturation of hiPSC-derived cardiomyocytes, and that the maturation-inducing cues have phenotype-dependent effects on the cells' action-potential morphology and calcium handling. By using microfluidic chips that enhanced the alignment and extracellular-matrix production of cardiac microtissues derived from genetically distinct sources of hiPSC-derived cardiomyocytes, we identified fatty-acid-enriched maturation media that improved the cells' mitochondrial structure and calcium handling, and observed divergent cell-source-dependent effects on action-potential duration (APD). Specifically, in the presence of maturation media, tissues with abnormally prolonged APDs exhibited shorter APDs, and tissues with aberrantly short APDs displayed prolonged APDs. Regardless of cell source, tissue maturation reduced variabilities in spontaneous beat rate and in APD, and led to converging cell phenotypes (with APDs within the 300-450 ms range characteristic of human left ventricular cardiomyocytes) that improved the modelling of the effects of pro-arrhythmic drugs on cardiac tissue.


Assuntos
Células-Tronco Pluripotentes Induzidas , Cálcio/metabolismo , Diferenciação Celular , Humanos , Microfluídica , Miócitos Cardíacos
4.
Commun Biol ; 4(1): 1118, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552201

RESUMO

Low-temperature biopreservation and 3D tissue engineering present two differing routes towards eventual on-demand access to transplantable biologics, but recent advances in both fields present critical new opportunities for crossover between them. In this work, we demonstrate sub-zero centigrade preservation and revival of autonomously beating three-dimensional human induced pluripotent stem cell (hiPSC)-derived cardiac microtissues via isochoric supercooling, without the use of chemical cryoprotectants. We show that these tissues can cease autonomous beating during preservation and resume it after warming, that the supercooling process does not affect sarcomere structural integrity, and that the tissues maintain responsiveness to drug exposure following revival. Our work suggests both that functional three dimensional (3D) engineered tissues may provide an excellent high-content, low-risk testbed to study complex tissue biopreservation in a genetically human context, and that isochoric supercooling may provide a robust method for preserving and reviving engineered tissues themselves.


Assuntos
Temperatura Baixa , Coração/fisiologia , Preservação de Tecido/métodos , Humanos
5.
Front Pharmacol ; 12: 684252, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421592

RESUMO

Despite global efforts, it took 7 months between the proclamation of global SARS-CoV-2 pandemic and the first FDA-approved treatment for COVID-19. During this timeframe, clinicians focused their efforts on repurposing drugs, such as hydroxychloroquine (HCQ) or azithromycin (AZM) to treat hospitalized COVID-19 patients. While clinical trials are time-consuming, the exponential increase in hospitalizations compelled the FDA to grant an emergency use authorization for HCQ and AZM as treatment for COVID-19, although there was limited evidence of their combined efficacy and safety. The authorization was revoked 4 months later, giving rise to controversial political and scientific debates illustrating important challenges such as premature authorization of potentially ineffective or unsafe therapeutics, while diverting resources from screening of effective drugs. Here we report on a preclinical drug screening platform, a cardiac microphysiological system (MPS), to rapidly identify clinically relevant cardiac liabilities associated with HCQ and AZM. The cardiac MPS is a microfabricated fluidic system in which cardiomyocytes derived from human induced pluripotent stem cells self-arrange into a uniaxially beating tissue. The drug response was measured using outputs that correlate with clinical measurements such as action potential duration (proxy for clinical QT interval) and drug-biomarker pairing. The cardiac MPS predicted clinical arrhythmias associated with QT prolongation and rhythm instabilities in tissues treated with HCQ. We found no change in QT interval upon acute exposure to AZM, while still observing a significant increase in arrhythmic events. These results suggest that this MPS can not only predict arrhythmias, but it can also identify arrhythmias even when QT prolongation is absent. When exposed to HCQ and AZM polytherapy, this MPS faithfully reflected clinical findings, in that the combination of drugs synergistically increased QT interval when compared to single drug exposure, while not worsening the overall frequency of arrhythmic events. The high content cardiac MPS can rapidly evaluate the cardiac safety of potential therapeutics, ultimately accelerating patients' access to safe and effective treatments.

6.
Front Pharmacol ; 12: 667010, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025426

RESUMO

Three-dimensional (3D) microphysiological systems (MPSs) mimicking human organ function in vitro are an emerging alternative to conventional monolayer cell culture and animal models for drug development. Human induced pluripotent stem cells (hiPSCs) have the potential to capture the diversity of human genetics and provide an unlimited supply of cells. Combining hiPSCs with microfluidics technology in MPSs offers new perspectives for drug development. Here, the integration of a newly developed liver MPS with a cardiac MPS-both created with the same hiPSC line-to study drug-drug interaction (DDI) is reported. As a prominent example of clinically relevant DDI, the interaction of the arrhythmogenic gastroprokinetic cisapride with the fungicide ketoconazole was investigated. As seen in patients, metabolic conversion of cisapride to non-arrhythmogenic norcisapride in the liver MPS by the cytochrome P450 enzyme CYP3A4 was inhibited by ketoconazole, leading to arrhythmia in the cardiac MPS. These results establish integration of hiPSC-based liver and cardiac MPSs to facilitate screening for DDI, and thus drug efficacy and toxicity, isogenic in the same genetic background.

7.
Clin Transl Sci ; 14(3): 1155-1165, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33786981

RESUMO

Only a handful of US Food and Drug Administration (FDA) Emergency Use Authorizations exist for drug and biologic therapeutics that treat severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection. Potential therapeutics include repurposed drugs, some with cardiac liabilities. We report on a chronic preclinical drug screening platform, a cardiac microphysiological system (MPS), to assess cardiotoxicity associated with repurposed hydroxychloroquine (HCQ) and azithromycin (AZM) polytherapy in a mock phase I safety clinical trial. The MPS contained human heart muscle derived from induced pluripotent stem cells. The effect of drug response was measured using outputs that correlate with clinical measurements, such as QT interval (action potential duration) and drug-biomarker pairing. Chronic exposure (10 days) of heart muscle to HCQ alone elicited early afterdepolarizations and increased QT interval past 5 days. AZM alone elicited an increase in QT interval from day 7 onward, and arrhythmias were observed at days 8 and 10. Monotherapy results mimicked clinical trial outcomes. Upon chronic exposure to HCQ and AZM polytherapy, we observed an increase in QT interval on days 4-8. Interestingly, a decrease in arrhythmias and instabilities was observed in polytherapy relative to monotherapy, in concordance with published clinical trials. Biomarkers, most of them measurable in patients' serum, were identified for negative effects of monotherapy or polytherapy on tissue contractile function, morphology, and antioxidant protection. The cardiac MPS correctly predicted clinical arrhythmias associated with QT prolongation and rhythm instabilities. This high content system can help clinicians design their trials, rapidly project cardiac outcomes, and define new monitoring biomarkers to accelerate access of patients to safe coronavirus disease 2019 (COVID-19) therapeutics.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Azitromicina/efeitos adversos , Tratamento Farmacológico da COVID-19 , Hidroxicloroquina/efeitos adversos , SARS-CoV-2 , Cardiotoxicidade , Ensaios Clínicos como Assunto , Quimioterapia Combinada/efeitos adversos , Humanos , Síndrome do QT Longo/induzido quimicamente
8.
Front Pharmacol ; 11: 569489, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33628168

RESUMO

Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) offer a new means to study and understand the human cardiac action potential, and can give key insight into how compounds may interact with important molecular pathways to destabilize the electrical function of the heart. Important features of the action potential can be readily measured using standard experimental techniques, such as the use of voltage sensitive dyes and fluorescent genetic reporters to estimate transmembrane potentials and cytosolic calcium concentrations. Using previously introduced computational procedures, such measurements can be used to estimate the current density of major ion channels present in hiPSC-CMs, and how compounds may alter their behavior. However, due to the limitations of optical recordings, resolving the sodium current remains difficult from these data. Here we show that if these optical measurements are complemented with observations of the extracellular potential using multi electrode arrays (MEAs), we can accurately estimate the current density of the sodium channels. This inversion of the sodium current relies on observation of the conduction velocity which turns out to be straightforwardly computed using measurements of extracellular waves across the electrodes. The combined data including the membrane potential, the cytosolic calcium concentration and the extracellular potential further opens up for the possibility of accurately estimating the effect of novel drugs applied to hiPSC-CMs.

9.
bioRxiv ; 2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33398282

RESUMO

Despite global efforts, there are no effective FDA-approved medicines for the treatment of SARS-CoV-2 infection. Potential therapeutics focus on repurposed drugs, some with cardiac liabilities. Here we report on a preclinical drug screening platform, a cardiac microphysiological system (MPS), to assess cardiotoxicity associated with hydroxychloroquine (HCQ) and azithromycin (AZM) polytherapy in a mock clinical trial. The MPS contained human heart muscle derived from patient-specific induced pluripotent stem cells. The effect of drug response was measured using outputs that correlate with clinical measurements such as QT interval (action potential duration) and drug-biomarker pairing. Chronic exposure to HCQ alone elicited early afterdepolarizations (EADs) and increased QT interval from day 6 onwards. AZM alone elicited an increase in QT interval from day 7 onwards and arrhythmias were observed at days 8 and 10. Monotherapy results closely mimicked clinical trial outcomes. Upon chronic exposure to HCQ and AZM polytherapy, we observed an increase in QT interval on days 4-8.. Interestingly, a decrease in arrhythmias and instabilities was observed in polytherapy relative to monotherapy, in concordance with published clinical trials. Furthermore, biomarkers, most of them measurable in patients' serum, were identified for negative effects of single drug or polytherapy on tissue contractile function, morphology, and antioxidant protection. The cardiac MPS can predict clinical arrhythmias associated with QT prolongation and rhythm instabilities. This high content system can help clinicians design their trials, rapidly project cardiac outcomes, and define new monitoring biomarkers to accelerate access of patients to safe COVID-19 therapeutics.

10.
Stem Cell Res Ther ; 10(1): 248, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399129

RESUMO

BACKGROUND: Mesenchymal stem/stromal cells (MSCs) are considered an important candidate in cell therapy and tissue engineering approaches. The culture of stem cells in a 3D environment is known to better resemble the in vivo situation and to promote therapeutically relevant effects in isolated cells. Therefore, the aim of this study was to develop an approach for the direct isolation of MSCs from adipose tissue into a 3D environment, avoiding contact to a 2D plastic surface. Furthermore, the use of a cryoprotective medium for the cryopreservation of whole adipose tissue was evaluated. MATERIALS AND METHODS: Cryopreservation of fresh adipose tissue with and without a cryoprotective medium was compared with regard to the viability and metabolic activity of cells. After thawing, the tissue was embedded in a novel human platelet lysate-based hydrogel for the isolation of MSCs. The migration, yield, viability, and metabolic activity of cells from the 3D matrix were compared to cells from 2D explant culture. Also, the surface marker profile and differentiation capacity of MSCs from the 3D matrix were evaluated and compared to MSCs from isolation by enzymatic treatment or 2D explant culture. RESULTS: The cryopreservation of whole adipose tissue was found to be feasible, and therefore, adipose tissue can be stored and is available for MSC isolation on demand. Also, we demonstrate the isolation of MSCs from adipose tissue into the 3D matrix. The cells derived from this isolation procedure display a similar phenotype and differentiation capacity like MSCs derived by traditional procedures. CONCLUSIONS: The presented approach allows to cryopreserve adipose tissue. Furthermore, for the first time, MSCs were directly isolated from the tissue into a soft 3D hydrogel environment, avoiding any contact to a 2D plastic culture surface.


Assuntos
Tecido Adiposo/metabolismo , Plaquetas/metabolismo , Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Adulto , Plaquetas/química , Diferenciação Celular , Movimento Celular , Sobrevivência Celular , Criopreservação , Feminino , Humanos , Hidrogéis/química , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Fenótipo
11.
Biomaterials ; 217: 119289, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31254935

RESUMO

Intramyocardial hydrogel injection is an innovative and promising treatment for myocardial infarction (MI) and has recently entered clinical trials. By providing mechanical support to the ventricular wall, hydrogel injectate may act to preserve cardiac function and slow the remodeling process that leads to heart failure. However, improved outcomes will likely depend on the use of hydrogels specifically designed for this unique application, and better understanding of the mechanisms affected by the intervention. In this work, we present the first large animal study achieving functional and geometrical improvements in treating MI using a relatively stiff, fully synthetic hydrogel designed for intramyocardial injection. In addition, the renin-angiotensin system coincided with the mechanical effects of hydrogel injection and attenuated left ventricular remodeling, even after significant hydrogel degradation had occurred in vivo. These results may inspire further optimization of hydrogel materials used in intramyocardial hydrogel injection therapy and a better description of physiologic pathways affected by its implementation to facilitate successful clinical translation.


Assuntos
Hidrogéis/administração & dosagem , Hidrogéis/farmacologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Remodelação Ventricular/efeitos dos fármacos , Animais , Feminino , Testes de Função Cardíaca , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Injeções , Macrófagos/efeitos dos fármacos , Imageamento por Ressonância Magnética , Infarto do Miocárdio/diagnóstico por imagem , Neovascularização Fisiológica/efeitos dos fármacos , Ratos Endogâmicos Lew , Suínos
12.
Lab Chip ; 19(11): 1916-1921, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31070645

RESUMO

We have developed a highly integrated lab-on-a-chip containing embedded electrical microsensors, µdegassers and pneumatically-actuated micropumps to monitor allergic hypersensitivity. Rapid antigen-mediated histamine release (e.g. s to min) and resulting muscle contraction (<30 min) is detected by connecting an immune compartment containing sensitized basophile cells to a vascular co-culture model.


Assuntos
Comunicação Celular , Hipersensibilidade/diagnóstico , Hipersensibilidade/imunologia , Dispositivos Lab-On-A-Chip , Basófilos/citologia , Basófilos/imunologia , Desenho de Equipamento , Fatores de Tempo
13.
Biotechnol Bioeng ; 116(6): 1417-1426, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30739319

RESUMO

Multipotent mesenchymal stromal cells (MSC) and MSC-derived products have emerged as promising therapeutic tools. To fully exploit their potential, further mechanistic studies are still necessary and bioprocessing needs to be optimized, which requires an abundant supply of functional MSC for basic research. To address this need, here we used a novel technology to establish a human adipose-derived MSC line with functional characteristics representative of primary MSC. Primary MSC were isolated and subjected to lentiviral transduction with a library of expansion genes. Clonal cell lines were generated and evaluated on the basis of their morphology, immunophenotype, and proliferation potential. One clone (K5 iMSC) was then selected for further characterization. This clone had integrated a specific transgene combination including genes involved in stemness and maintenance of adult stem cells. Favorably, the K5 iMSC showed cell characteristics resembling juvenile MSC, as they displayed a shorter cell length and enhanced migration and proliferation compared with the non-immortalized original primary MSC (p < 0.05). Still, their immunophenotype and differentiation potential corresponded to the original primary MSC and the MSC definition criteria, and cytogenetic analyses revealed no clonal aberrations. We conclude that the technology used is applicable to generate functional MSC lines for basic research and possible future bioprocessing applications.


Assuntos
Células-Tronco Mesenquimais/citologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Idoso , Diferenciação Celular , Linhagem Celular , Movimento Celular , Separação Celular/métodos , Células Cultivadas , Feminino , Humanos , Cariótipo , Lentivirus/genética , Células-Tronco Mesenquimais/metabolismo , Transdução Genética/métodos , Transgenes
14.
Front Pharmacol ; 10: 1648, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32116671

RESUMO

Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) hold great potential for drug screening applications. However, their usefulness is limited by the relative immaturity of the cells' electrophysiological properties as compared to native cardiomyocytes in the adult human heart. In this work, we extend and improve on methodology to address this limitation, building on previously introduced computational procedures which predict drug effects for adult cells based on changes in optical measurements of action potentials and Ca2+ transients made in stem cell derived cardiac microtissues. This methodology quantifies ion channel changes through the inversion of data into a mathematical model, and maps this response to an adult phenotype through the assumption of functional invariance of fundamental intracellular and membrane channels during maturation. Here, we utilize an updated action potential model to represent both hiPSC-CMs and adult cardiomyocytes, apply an IC50-based model of dose-dependent drug effects, and introduce a continuation-based optimization algorithm for analysis of dose escalation measurements using five drugs with known effects. The improved methodology can identify drug induced changes more efficiently, and quantitate important metrics such as IC50 in line with published values. Consequently, the updated methodology is a step towards employing computational procedures to elucidate drug effects in adult cardiomyocytes for new drugs using stem cell-derived experimental tissues.

15.
ACS Biomater Sci Eng ; 5(9): 4355-4365, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-33438401

RESUMO

It has long been a central tenet of biomedical research that coating of nanoparticles with hydrated polymers can improve their performance in biomedical applications. However, the efficacy of the approach in vivo is still debated. In vitro model systems to test the performance of engineered nanoparticles for in vivo applications often use nonrepresentative cell lines and conditions for uptake and toxicity tests. We use our platform of monodisperse iron oxide nanoparticles densely grafted with nitrodopamide-poly(ethylene glycol) (PEG) to probe cell interactions with a set of cell types and culture conditions that are relevant for applications in which nanoparticles are injected into the bloodstream. In the past, these particles have proved to have excellent stability and negligible interaction with proteins and membranes under physiological conditions. We test the influence of flow on the uptake of nanoparticles. We also investigate the transport through endothelial barrier cell layers, as well as the effect that PEG-grafted iron oxide nanoparticles have on cell layers relevant for nanoparticles injected into the bloodstream. Our results show that the dense PEG brush and resulting lack of nonspecific protein and membrane interaction lead to negligible cell uptake, toxicity, and transport across barrier layers. These results contrast with far less well-defined polymer-coated nanoparticles that tend to aggregate and consequently strongly interact with cells, for example, by endocytosis.

16.
Stem Cell Res Ther ; 9(1): 261, 2018 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-30292241

RESUMO

The original article [1] contains numerous value errors in the graphs in Fig. 2b regarding the markers describing the values for total tubule length and mean tubule length without aprotinin at 2.5 mg/ml concentration of fibrinogen. The corrected version of this figure can be viewed ahead.

17.
Anal Chem ; 90(6): 3651-3655, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29478320

RESUMO

In the present work, we combine experimental and computational methods to define the critical shear stress as an alternative parameter for nanotoxicological and nanomedical evaluations using an in vitro microfluidic vascular model. We demonstrate that our complementary in vitro and in silico approach is well suited to assess the fluid flow velocity above which clathrin-mediated (active) nanoparticle uptake per cell decreases drastically although higher numbers of nanoparticles per cell are introduced. Results of our study revealed a critical shear stress of 1.8 dyn/cm2, where maximum active cellular nanoparticle uptake took place, followed by a 70% decrease in uptake of 249 nm nanoparticles at 10 dyn/cm2, respectively. The observed nonlinear relationship between flow velocity and nanoparticle uptake strongly suggests that fluid mechanical forces also need to be considered in order to predict potential in vivo distribution, bioaccumulation, and clearance of nanomaterials and novel nanodrugs.


Assuntos
Células Endoteliais/metabolismo , Técnicas Analíticas Microfluídicas/métodos , Nanopartículas/metabolismo , Velocidade do Fluxo Sanguíneo , Clatrina/metabolismo , Simulação por Computador , Células Endoteliais/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrodinâmica , Resistência ao Cisalhamento , Estresse Mecânico
18.
Stem Cell Res Ther ; 9(1): 35, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29433579

RESUMO

BACKGROUND: Co-cultures of endothelial cells with mesenchymal stem cells currently represent one of the most promising approaches in providing oxygen and nutrient supply for microvascular tissue engineering. Still, to translate this model into clinics several in vitro parameters including growth medium and scaffold degradation need to be fine-tuned. METHODS: We recently described the co-culture of adipose-derived stem cells with endothelial cells in fibrin, resulting in capillary formation in vitro as well as their perfusion in vivo. Here, we aimed to further characterise microvascular tube formation in fibrin by determining the role of scaffold degradation, thrombin concentration and culture conditions on vascularisation. RESULTS: We observed that inhibition of cell-mediated fibrin degradation by the commonly used inhibitor aprotinin resulted in impaired vascular network formation. Aprotinin had no effect on laminin and collagen type IV deposition or formation of tube-like structures in scaffold-free co-culture, indicating that poor vascularisation of fibrin clots is primarily caused by inhibition of plasminogen-driven fibrinolysis. Co-culture in plasminogen- and factor XIII-depleted fibrin did not result in different vascular network density compared to controls. Furthermore, we demonstrate that thrombin negatively affects vascular network density at high concentrations. However, only transient activation of incorporated endothelial cells by thrombin could be observed, thus excluding a long-term inflammatory response in tissue-engineered micro-capillaries. Finally, we show that vascularisation of fibrin scaffolds in basal medium is undermined because of increased fibrinolytic activity leading to scaffold destabilisation without aprotinin. CONCLUSIONS: Taken together, our data reveal a critical role of fibrinolysis inhibition in in vitro cell-mediated vascularisation of fibrin scaffolds.


Assuntos
Tecido Adiposo/metabolismo , Aprotinina/farmacologia , Capilares/metabolismo , Fibrinólise/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Células-Tronco/metabolismo , Tecido Adiposo/citologia , Capilares/citologia , Técnicas de Cocultura , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Células-Tronco/citologia
19.
Cytometry A ; 93(1): 19-31, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29072818

RESUMO

Mesenchymal stem cells (MSC) exhibit a high self-renewal capacity, multilineage differentiation potential and immunomodulatory properties. This set of exceptional features makes them an attractive tool for research and clinical application. However, MSC are far from being a uniform cell type, which makes standardization difficult. The exact properties of human MSC (hMSC) can vary greatly depending on multiple parameters including tissue source, isolation method and medium composition. In this review we address the most important influence factors. We highlight variations in the differentiation potential of MSC from different tissue sources. Furthermore, we compare enzymatic isolation strategies with explants cultures focusing on adipose tissue and umbilical cords as two relevant examples. Additionally, we address effects of medium composition and serum supplementation on MSC expansion and differentiation. The lack of standardized methods for hMSC isolation and cultivation mandates careful evaluation of different protocols regarding efficiency and cell quality. MSC characterization based on a set of minimal criteria defined by the International Society for Cellular Therapy is a widely accepted practice, and additional testing for MSC functionality can provide valuable supplementary information. The MSC secretome has been identified as an important signaling mechanism to affect other cells. In this context, extracellular vesicles (EVs) are attracting increasing interest. The thorough characterization of MSC-derived EVs and their interaction with target cells is a crucial step toward a more complete understanding of MSC-derived EV functionality. Here, we focus on flow cytometric approaches to characterize free as well as cell bound EVs and address potential differences in the bioactivity of EVs derived from stem cells from different sources. © 2017 International Society for Advancement of Cytometry.


Assuntos
Células-Tronco Mesenquimais/citologia , Tecido Adiposo/citologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Separação Celular/métodos , Meios de Cultura , Meios de Cultura Livres de Soro , Vesículas Extracelulares/fisiologia , Citometria de Fluxo/métodos , Humanos , Células-Tronco Mesenquimais/fisiologia , Cordão Umbilical/citologia
20.
Materials (Basel) ; 10(9)2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28914792

RESUMO

Collagen is a main component of the extracellular matrix. It is often used in medical applications to support tissue regeneration, hemostasis, or wound healing. Due to different sources of collagen, the properties and performance of available products can vary significantly. In this in vitro study, a comparison of seven different collagen matrices derived from bovine, equine, and porcine sources was performed. As performance indicators, the scaffold function for fibroblasts and platelet aggregation were used. We found strong variation in platelet aggregation and fibroblast growth on the different collagen materials. The observed variations could not be attributed to species differences alone, but were highly dependent on differences in the manufacturing process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...